Сайт по юридической психологии
Сайт по юридической психологии

Психологическая библиотека

 
Аткинсон Р. и др.
ВВЕДЕНИЕ В ПСИХОЛОГИЮ.Учебник для студентов университетов
М., 1999.
 

Часть III. Сознание и восприятие

Глава 4. Сенсорные процессы

 

Слух

Так же как и зрение, слух является важнейшим средством получения информации об окружении. Для многих из нас это основной канал коммуникации и средство передачи музыки. Как мы увидим, все это возможно благодаря тому, что небольшие изменения звукового давления приводят в колебательное движение мембрану внутреннего уха.

Мы будем рассматривать слух по тому же плану, что и зрение. Сначала мы рассмотрим природу физического стимула, к которому чувствителен слух, потом опишем слуховую систему, уделив особое внимание преобразованиям в рецепторах, и наконец обратимся к кодированию интенсивности и качества звука слуховой системой.

Звуковые волны

Звук возникает вследствие движения или вибрации объекта, — например, когда ветер дует сквозь ветви деревьев. Когда что-либо движется, молекулы находящегося впереди воздуха сжимаются. Эти молекулы толкают другие молекулы и затем возвращаются в исходное положение. Так волна меняющегося давления (звуковая волна) передается по воздуху, хотя отдельные молекулы воздуха далеко не уходят. Эта волна аналогична ряби на поверхности пруда, когда туда бросают камень.

Звуковую волну можно описать графиком давления воздуха в зависимости от времени. График давления в зависимости от времени для одного из видов звука показан на рис. 4.23. На нем представлена синусоидальная волна (названная так потому, что она аналогична синусоидальной функции в математике). Звук, соответствующий синусоидальной волне, называется чистым тоном. Такие звуки важны для анализа слуха, потому что более сложные звуки можно разложить на чистые тона, т. е. на ряд различных синусоидальных волн. Чистые тона определяются двумя параметрами, от которых зависит их ощущение человеком. Один параметр — это частота тона. Частота тона — это количество колебаний за одну секунду (или герц), т. е. частота, с которой молекулы двигаются туда-сюда (см. рис. 4.23). Частота — основа воспринимаемой высоты тона, одного из наиболее примечательных качеств звука.

Рис. 4.23. Чистый тон.
Вибрирующий камертон создает последовательность волн сжатия и расширения воздуха, подчиняющихся синусоидальному закону. Такой звук называется чистым тоном. Он описывается параметрами частоты и интенсивности. Когда камертон делает 100 колебаний в секунду, он создает звуковую волну со 100 сжатиями в секунду, или с частотой 100 герц. Интенсивность (или амплитуда) чистого тона — это разница в давлении между пиками и впадинами. Форму волны любого звука можно разложить на ряд синусоидальных волн с различной частотой, амплитудой и фазой. Когда эти синусоидальные волны складываются, получается первоначальная форма волны.

Второй параметр чистого тона — его интенсивность (амплитуда), т. е. различие давлений между пиком и впадиной на графике зависимости давления от времени (см. рис. 4.23). Интенсивность — основа восприятия громкости. Интенсивность звука обычно измеряется в децибелах (дБ); росту интенсивности на 10 децибел соответствует увеличение мощности в 10 раз, росту на 20 децибел — увеличение в 100 раз, 30 децибел — 1000 раз и так далее. Например, тихий шепот в беззвучной обстановке библиотеки имеет интенсивность около 30 децибел, в шумном ресторане уровень звука может равняться 70 децибелам, уровень звука на рок-концерте может достигать 120 децибел, а шум взлетающего самолета может превышать 140 децибел. Постоянное воздействие уровня звука, превышающего 100 децибел, может повлечь за собой необратимую потерю слуха.

И последней характеристикой звука является тембр — наше восприятие сложности звука. Практически ни один из звуков, окружающих нас в повседневной жизни, не является столь простым, как чистые тона, о которых мы говорили выше. (Исключение составляют лишь камертоны и некоторые электронные музыкальные инструменты.) Звуки, издаваемые акустическими инструментами, автомобилями, человеческим голосом, животными и водопадами, характеризуются сложными паттернами звукового давления.

Слуховая система

К слуховой системе относятся уши, некоторые участки мозга и проводящие нервные пути. Нас в первую очередь будут интересовать сами уши; к ним относят не только отростки по обеим сторонам головы, но и весь слуховой орган, большей частью находящийся внутри черепа (рис. 4.24).

Рис. 4.24. Поперечный разрез уха.
На рисунке показано общее строение уха. Внутреннее ухо состоит из улитки, содержащей слуховые рецепторы, и вестибулярного аппарата (полукружные каналы и вестибулярные мешочки), служащего органом для чувства равновесия и движения тела.

Как и глаз, ухо содержит две системы. Одна система усиливает и передает звук к рецепторам, после чего за дело принимается другая система, которая преобразует звук в нервные импульсы. Передающая система включает наружное ухо, состоящее из внешнего уха (pinna — ушная раковина) и слухового канала, а также среднее ухо, состоящее из барабанной перепонки и цепочки из трех костей — молоточка, наковальни и стремечка. Система преобразования расположена в части внутреннего уха, называемой улиткой и содержащей рецепторы звука.

Рассмотрим передающую систему подробнее (рис. 4.25). Наружное ухо помогает улавливанию звуков и передает их через слуховой канал к упругой мембране, которая называется барабанной перепонкой. Барабанная перепонка — самая наружная часть внутреннего уха. Ее заставляют вибрировать звуковые волны, приходящие по слуховому каналу. Задача внутреннего уха — передать вибрации барабанной перепонки через заполненную воздухом полость к другой мембране, овальному окошечку, служащему воротами ко внутреннему уху и рецепторам. Эту передачу внутреннее ухо осуществляет посредством механического мостика, построенного из молоточка, наковальни и стремечка. От барабанной перепонки вибрации передаются первой из этих косточек, передающей их второй, которая, в свою очередь, передает их третьей, результатом чего являются вибрации овального окошечка. Это механическое приспособление не только передает звуковую волну, но и значительно усиливает ее.

Рис. 4.25. Схематическое строение среднего и внутреннего уха.
а) Движения жидкости внутри улитки изгибают базилярную мембрану и стимулируют волосяные клетки, служащие слуховыми рецепторами,
б) На поперечном сечении улитки показана базилярная мембрана и волосяные клетки-рецепторы.

Теперь рассмотрим систему преобразования. Улитка — это спиралевидная трубка из костного вещества. Мембраны разделяют ее на секции, заполненные жидкостью; одна из мембран — базилярная, к ней прикреплены слуховые рецепторы (см. рис, 4.25). Эти рецепторы называются волосяными клетками, потому что по строению они похожи на волоски, проникающие в жидкость. Давление на овальном окошечке (соединяющем среднее и внутреннее ухо) создает изменения давления жидкости в улитке, что, в свою очередь, заставляет базилярную мембрану вибрировать, приводя к изгибанию волосяных клеток и появлению электрического импульса. Таков сложный процесс преобразования звуковой волны в электрический импульс. Нейроны, синаптически соединенные с нервными клетками, имеют длинные аксоны, которые образуют часть слухового нерва. Большинство слуховых нейронов соединены с отдельными нервными клетками. В слуховом нерве около 31 000 слуховых нейронов, что гораздо меньше одного миллиона нейронов, составляющих зрительный нерв (Yost & Nielson, 1985). От каждого уха слуховые пути идут к обеим сторонам мозга и заканчиваются на синапсах различных ядер, прежде чем достигают слуховой коры.

Восприятие интенсивности звука

Вспомним, что наше зрение более чувствительно к одним длинам волн, чем к другим. В слуховом восприятии есть аналогичное явление. Человек более чувствителен к звукам в середине частотного диапазона, чем к звукам с частотой ближе к его краям. Это показано на рис. 4.26, где приведена зависимость абсолютного порога интенсивности звука от частоты. У многих людей слух в той или иной степени ослаблен, и порог у них выше того, что показан на рис. 4.26.

Рис. 4.26. Абсолютный порог для слуха.
Нижняя кривая показывает абсолютную пороговую интенсивность для различных частот. Наибольшая чувствительность наблюдается в окрестностях частоты 1000 герц. Верхняя кривая показывает болевой порог (данные аппроксимированы по различным источникам).

Есть два основных варианта недостаточности слуха. При одном из них пороги повышаются примерно в равной степени для всех частот в результате плохой проводимости среднего уха (потеря проводимости). В другом случае потери слуха порог повышается в неравной степени, причем более всего он повышается на высоких частотах. Такая ситуация обычно является следствием повреждения внутреннего уха и часто связана с частичным разрушением волосковых клеток (потеря нервной чувствительности). Волосковые клетки после разрушения не восстанавливаются. Потеря нервной чувствительности возникает у многих пожилых людей. Вот почему им часто трудно расслышать высокие звуки. Однако потеря нервной чувствительности не происходит исключительно у пожилых. Она возникает и у молодых, если на них воздействует чрезмерно громкий звук. Необратимой потерей слуха обычно страдают рок-музыканты, работники взлетно-посадочных полос в аэропортах и работающие с отбойным молотком. Например, у Пита Таунзенда, известного гитариста из группы «The Who», возникло серьезное ослабление слуха из-за того, что на него постоянно воздействовала громкая рок-музыка; с тех пор он предупреждал многих молодых людей об этой опасности.

Естественно предположить, что воспринимаемая интенсивность звука одинакова для обоих ушей, но на самом деле здесь есть тонкие различия. Если звук приходит справа, то для правого уха его слышимость будет больше, чем для левого; это происходит потому, что голова образует «звуковую тень», которая снижает интенсивность звука, доходящего до дальнего уха. Но это вовсе не ограничение слуховых возможностей, поскольку человек использует величину междуушного расхождения в интенсивности для локализации направления звука (это как если бы мы рассуждали, что «если интенсивность звука в моем правом ухе больше, чем в левом, должно быть, звук пришел справа»). Аналогично, звук, приходящий с правой стороны, поступает в правое ухо на долю секунды раньше, чем в левое (и наоборот, если звук пришел слева). Человек также использует это междуушное расхождение во времени, чтобы локализовать звук («если звук сначала пришел в мое правое ухо, значит, он пришел справа»).

Восприятие высоты звука

Высота и частота. Когда мы слышим чистый тон, то воспринимаем не только его громкость, но и высоту. Подобно тому как цвет — главное качество света, так и высота — главное качество звука, ранжированного по шкале от низкого до высокого. И подобно тому как цвет определяется частотой света, высота определяется частотой звука. При возрастании частоты высота увеличивается. Как и длину световой волны, частоту звука человек различает очень хорошо. Молодой взрослый может слышать частоты в диапазоне от 20 до 20 000 герц (колебаний в секунду), причем ЕЗР составляет менее 1 герца при частоте 100 герц и возрастает до 100 герц при 10 килогерцах.

Однако в слуховом восприятии нет ничего похожего на смешение цветов. Когда две и более частот звучат одновременно, можно слышать высоту каждой частоты при условии, что они достаточно различаются. Если частоты различаются несильно, ощущение будет более сложным, но все равно звук не будет похож на один чистый тон. При изучении цветового восприятия обнаружение того факта, что смешение трех цветных источников света дает ощущение одного цвета, привело к идее о трех типах рецепторов. Отсутствие аналогичного явления в слуховом восприятии позволяет предположить, что если есть рецепторы, настроенные на различные частоты, то типов таких рецепторов должно быть множество.

Теории восприятия высоты звука. Как и в случае цветового зрения, для объяснения того, как частота кодируется ухом в высоту звука, были предложены две теории.

Первая теория была создана британским физиком Резерфордом в 1886 году. Он предположил, что: а) звуковая волна заставляет вибрировать всю базилярную мембрану и частота вибраций соответствует частоте звука; б) частота вибраций мембраны задает частоту нервных импульсов, передаваемых по слуховому нерву. Так, тон частотой 1000 герц заставляет базилярную мембрану вибрировать 1000 раз в секунду, в результате чего волокна слухового нерва разряжаются с частотой 1000 импульсов в секунду, а мозг интерпретирует это как определенную высоту. Поскольку в этой теории предполагается, что высота зависит от изменений звука во времени, ее назвали временной теорией (ее называют также частотной теорией).

Гипотеза Резерфорда вскоре встретилась с серьезными проблемами. Было доказано, что нервные волокна могут передавать не более 1000 импульсов в секунду, и тогда неясно, как человек воспринимает высоту тона с частотой более 1000 герц. Вивер (Weaver, 1949) предложил способ спасения временной теории. Он предположил, что частоты выше 1000 герц кодируются различными группами нервных волокон, каждая из которых активируется в несколько разном темпе. Если, например, одна группа нейронов выдает 1000 импульсов в секунду, а затем 1 миллисекунду спустя другая группа нейронов начинает выдавать 1000 импульсов в секунду, то комбинация импульсов этих двух групп даст 2000 импульсов в секунду. Эту версию временной теории подкрепило открытие, что паттерн нервных импульсов в слуховом нерве повторяет форму волны стимульного тона, несмотря на то, что отдельные клетки реагируют не на каждое колебание (Rose et al., 1967).

Однако способность нервных волокон отслеживать форму волны обрывается примерно на частоте 4000 герц; тем не менее мы можем слышать высоту звука, содержащего гораздо более высокие частоты. Отсюда следует, что должно существовать другое средство кодирования высотного качества звука, по крайней мере на высоких частотах.

Другая теория восприятия высоты звука относится к 1683 году, когда французский анатом Жозеф Гишар Дювернье предположил, что частота кодируется высотой звука механически, путем резонанса (Green & Wier, 1984). Чтобы разобраться в этом предположении, полезно сначала рассмотреть пример резонанса. Когда ударяют по камертону, который находится рядом с пианино, струна пианино, настроенная на частоту камертона, начинает колебаться. Если мы говорим, что ухо работает по тому же принципу, это значит, что в нем есть некая структура, сходная по конструкции со струнным инструментом, причем различные ее части настроены на различные частоты, так что когда на ухо предъявляется некоторая частота, соответствующая часть этой структуры начинает колебаться. Эта идея была в общем правильной: такой структурой оказалась базилярная мембрана.

В XIX веке Герман фон Гельмгольц, исходя из гипотезы резонанса, предложил для объяснения восприятия высоты теорию локальности. Согласно этой теории, каждый конкретный участок базилярной мембраны, когда он начинает реагировать, создает ощущение определенной высоты тона. Предполагаемое множество участков на мембране согласуется с фактом существования множества рецепторов высоты. Заметьте, что теория локальности не означает, что мы слышим звук базилярной мембраной; просто от того, какие участки мембраны вибрируют, в наибольшей степени зависит, какую высоту мы услышим. Это пример органа чувства, в котором кодирование качества осуществляется путем «включения» тех или иных нервных волокон.

Как именно колеблется базилярная мембрана, не было известно до 1940 года, когда Георг фон Бекеши измерил ее движения при помощи маленьких отверстий, просверленных в улитках морских свинок и человеческих трупов. Учитывая результаты Бекеши, потребовалось модифицировать теорию локальности; базилярная мембрана вела себя не как пианино с раздельными струнами, а как простыня, которую встряхнули за один конец. В частности, Бекеши показал, что при большинстве частот вся базилярная мембрана приходит в движение, но место наиболее интенсивного движения зависит от конкретной частоты звучания. Высокие частоты вызывают вибрацию в ближнем конце базилярной мембраны; по мере повышения частоты паттерн вибрации сдвигается к овальному окошечку (Bekesy, 1960). За это и другие исследования слуха Бекеши получил в 1961 году Нобелевскую премию.

Как и временные теории, теория локальности объясняет многие, но не все явления восприятия высоты звука. Основные затруднения у теории локальности связаны с тонами низких частот. При частотах ниже 50 герц все части базилярной мембраны вибрируют примерно одинаково. Это значит, что все рецепторы активируются в равной степени, из чего следует, что у нас нет способа различения частот ниже 50 герц. На самом же деле мы можем различать частоту всего в 20 герц.

Таким образом, теории локальности затрудняются объяснить восприятие низкочастотных звуков, а временные теории — восприятие высоких частот. Все это навело на мысль, что восприятие высоты звука определяется как временными паттернами, так и паттернами локализации, причем временная теория объясняет восприятие низких частот, а теория локальности — восприятие высоких частот. Ясно, однако, что там, где один механизм отступает, начинает преобладать другой. На самом деле не исключено, что частоты от 1000 до 5000 герц обслуживаются обоими механизмами (Coren, Ward & Enns, 1999).

Поскольку наши уши и глаза играют столь важную роль в нашей повседневной жизни, были предприняты значительные усилия, направленные на то, чтобы заменить их на искусственные у индивидуумов, страдающих неизлечимыми дефектами этих органов. Некоторые из этих усилий описаны в рубрике «На переднем крае психологических исследований».



Предыдущая страница Содержание Следующая страница